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ABSTRACT

Although the pyramidal inversion barriers in diphosphines (R2P�PR2) are similar to those in phosphines (PR3), P-stereogenic chiral diphosphines
have rarely been exploited as building blocks in asymmetric synthesis. The synthesis, reactivity, and resolution of the benzodiphosphetane trans-
1,2-(P(t-Bu))2C6H4 are reported. Alkylation with MeOTf followed by addition of a nucleophile gave the useful C2-symmetric P-stereogenic ligand
BenzP* and novel analogues.

P-Stereogenic phosphines such as DiPAMP1 are valu-
able ligands in asymmetric catalysis.2 The barrier to pyr-
amidal inversion in the diphosphines R2P�PR2 (22�
26 kcal/mol)3 is similar to that in phosphines PR3

(29�36 kcal/mol),4 but chiral diphosphines have received
little attention in asymmetric synthesis. The reactive P�P
bond makes these compounds potentially useful building
blocks in the synthesis of chiral phosphines.5 For example,
enantiomerically pure diphosphine 1 was recently used to

prepare P-stereogenic Josiphos ligands.6 However, isolat-
ing C2-symmetric menthyl-substituted diphosphine 2 re-
quired separation of a 1:3 mixture of C2- and meso-2, and
C2-2 rapidly epimerized in solution below room tempera-
ture (Figure 1).7

Figure 1. P-Stereogenic chiral diphosphines.

†Dartmouth College.
‡University of California.
(1) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998–2007.
(2) (a) Grabulosa, A. P-Stereogenic Ligands in Enantioselective Cat-

alysis; RSC: Cambridge, 2011. (b) Phosphorus Ligands in Asymmetric
Catalysis. Synthesis and Applications; B€orner, A., Ed.; Wiley-VCH:
Weinheim, 2008.

(3) (a) Lambert, J. B.; Jackson, G. F.; Mueller, D. C. J. Am. Chem.
Soc. 1970, 92, 3093–3097. (b) Lambert, J. B.; Jackson, G. F.; Mueller,
D. C. J. Am. Chem. Soc. 1968, 90, 6401–6405. (c) Lambert, J. B.;
Mueller, D. C. J. Am. Chem. Soc. 1966, 88, 3669–3670. (d) Albrand,
J. P.; Gagnaire, D. J. Am. Chem. Soc. 1972, 94, 8630–8632.

(4) Baechler, R. D.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 3090–
3093.

(5) (a) Cowley, A. H. Chem. Rev. 1965, 65, 617–634. (b) Lutsenko,
I. F.; Proskurnina, M. V. Russ. Chem. Rev. 1978, 47, 880–895.

(6) (a) Buergler, J. F.; Togni, A. Chem. Commun. 2011, 47, 1896–
1898. (b) For a related chiral cyclic diphosphine, whose reactivity was
not explored, see: Leseurre, L.; Le Boucher d’Herouville, F.; P€untener,
K.; Scalone, M.; Genet, J.-P.; Michelet, V. Org. Lett. 2011, 13, 3250-
3253.

(7) Appel,R.; Br€uck,B.;Knoch,F.;H€unerbein, J.Phosphorus, Sulfur
Silicon Relat. Elem. 1986, 27, 55–64.



Org. Lett., Vol. 14, No. 16, 2012 4239

These examples suggest that chiral diphosphines such as
2 might be useful synthons if the C2-symmetric isomer
could be prepared selectively and if the P-inversion barrier
was high enough to enable routine manipulations. There-
fore, we investigated a rare class of heterocycles, the
benzodiphosphetanes, in which steric effects make the
meso-isomer less stable than the C2 one and should also
increase the P-inversion barrier (Figure 2).

Although the all-carbon analogues (cyclobutarenes)8

have been intensively studied, and silicon9 and sulfur
derivatives are known,10 very few benzodiphosphetanes
have been prepared. After unsuccessful attempts to make
3, which gave its dimer 4 in <1% yield,11 the sterically
protected 5 (Mes* = 2,4,6-(t-Bu)3C6H2) was reported,

12

and the parent compound 6 was observed as a reaction
intermediate (Figure 2).13More recently, the synthesis and
structures of analogous carbaborane derivatives 7a�b
were reported,14 but little is known about the reactivity
and possible applications of the P�P bond in these
compounds.
Here we report a simple synthesis of trans-1,2-(P(t-Bu))2

C6H4 (8), studies of its reactivity, its resolution using a Pd
complex, and its use as a building block for synthesis of
P-stereogenic bis(phosphines) of known and potential utility
in asymmetric catalysis.
Benzodiphosphetane 8 was prepared in 78% yield by

reduction of the known chlorophosphine 9 with Mg;14,15

this reaction may be carried out in one pot without
isolation of 9 after its generation from commercially

available 10 with t-BuMgCl (Scheme 1).16 Treatment of
9with excess t-BuMgCl also generated 8. This reaction had
been reported in 1986 by Kyba and co-workers, who
observed benzodiphosphetane 8 by 31P NMR spectro-
scopy but were not able to identify or isolate it.16

Alternatively, a copper-catalyzed reaction of bis-
(secondary phosphine)16 11 with 2 equiv of NaOSiMe3
and dibromoethane gave 8.17 Similarly, treatment of 11
with 2 equiv of n-BuLi gave dianion 12; quenching with
dibromoethane gave 8 as themajor product.More surpris-
ingly, treatment of 12withbenzyl bromide or chloride gave
8 in a mixture with the expected product, bis(tertiary
benzylphosphine) 13. The 8/13 product ratios (5:1 for Br,
1.2:1 for Cl) were consistent with formation of 8 via attack
of the phosphido nucleophile at a halide instead of carbon,
or an electron transfer process (Scheme 1).18

Despite the strained ring system, 8 distilled without
decomposition under vacuum at 110 �C. It was air-stable
for several days, even in solution. The volatility of 8 was
consistent with its formulation as a monomer, not a dimer
such as 4, as were 1H NMRDOSY studies, using 11 as an
internal standard.19 DFT calculations on 8 predicted a
P�P bond length (2.292 Å) in the normal range20 and the
expected acute CPC angle (75.9�, Figure 3).C2-Symmetric
8, the only isomer observed,was calculated to be 12 kcal/mol
more stable than its meso isomer. The computed bar-
rier to pyramidal inversion in 8 (35 kcal/mol) was, as

Figure 2. Benzodiphosphetanes and analogous dicarbaborane
derivatives.

Scheme 1. Synthesis of Benzodiphosphetane 8
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expected, higher thanusual for diphosphines and similar to
values calculated for carbaborane 7a.14

Diphosphetane 8 formed BH3 adduct 14, which readily
lost borane on attempted chromatography or aqueous
workup; bis(phosphine sulfide) 15 also could not be ob-
tained in pure form (Scheme 2). Addition of I2 across the
P�P bond gave the diiodophosphine 16, which was also
formed from diiodoethane.5,14 Reaction of 1 equiv of MeI
with 8 yielded cation 18 and unreacted 8; methylation of
the (unobserved) presumed initial product 17 was appar-
ently faster than its formation. Excess MeI gave full
conversion to 18.5 In contrast, 8 reacted with methyl
triflate to form phosphonium salt 19 (JPP = 175 Hz),
which retained the P�P bond.6a,21

Reaction of 19 with nucleophiles resulted in P�P clea-
vage to formbis(phosphines) with high diastereoselectivity
(Scheme 3).6a,21 Thus, MeMgBr gave C2-symmetric
BenzP* (20),22 while PhMgBr yielded 21. However, t-
BuMgCl transferred a hydride instead of a t-Bu group to
yield, as the major product, the mixed tertiary/secondary
phosphine 22 (2:1 dr), which could also be formed using
borohydrides such as LiEt3BH.23 Reaction of 19 with
NEt3/H2O gave the analogous secondary phosphine oxide
(SPO) 23 as a single isomer, presumably via tautomeriza-
tion of the P�OH intermediate.24 The structure of second-
ary phosphine 22 was confirmed by its oxidation to
SPO 23.

Treatment of 8 with 2 equiv of chiral Pd complex 24
gave dinuclear 25 (Scheme 4).25 Recrystallization from

Figure 3. Computed structure (B3LYP/LACV3P**þþ) of ben-
zodiphosphetane 8 with selected bond lengths (Å, red) and
angles (deg, blue).

Scheme 2. Reactions of 8

Scheme 3. Reaction of Cation 19 with Nucleophiles

Scheme 4. Resolution of 8
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CH2Cl2/pentane effected separation of diastereomers 25,
giving the less soluble (RP,RP) isomer in >100:1 dr, and
(SP,SP)-25 in 14:1 dr. In the crystal structure of (RP,RP)-
25, the cyclometalated Pd-naphthyl moieties occupied
inequivalent positions (Scheme 4). This structure was
maintained in solution for both diastereomers (AB 31P
NMR spectra), as confirmed for (RP,RP)-25 by NOESY
studies.
Separate treatment of enriched samples of diaster-

eomers 25 with the bidentate bis(phosphine) dppe
(Ph2PCH2CH2PPh2) liberated enantiomerically enriched

8,26which didnot epimerizeonheating to105 �C in toluene
for 18 h, consistent with the high computed barrier to
inversion. Repeating the chemistry of Scheme 3 with
nonracemic 8 gave enantiomerically enriched BenzP* with
efficient chirality transfer (Scheme 5), with similar results
for the synthesis of SPO 23.
In conclusion, we report the synthesis and resolu-

tion of a chiral benzodiphosphetane, whose struc-
ture was designed to avoid formation of the unwanted
meso diastereomer and to increase the pyramidal in-
version barrier at phosphorus. Sequential electro-
philic and nucleophilic alkylation gave Imamoto’s
valuable C2-symmetric P-stereogenic bis(phosphine)
BenzP* (20) and novel analogues 21�22. These results
establish chiral benzodiphosphetanes, and, more
generally, diphosphines, as potentially useful build-
ing blocks in the synthesis of chiral phosphines.
Such processes would be more practical if they used
cheaper resolving agents or exploited (catalytic) asym-
metric synthesis;27 we are now investigating these
possibilities.28
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Scheme 5. Synthesis of Nonracemic BenzP* from Enriched 8
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